На протяжении последних десятилетий в пригородной зоне чаще всего строили дома из бруса или бревен, каркасные домики и коттеджи с кирпичными стенами толщиной не более чем в 2 кирпича. Низкий уровень теплозащиты таких домов вынуждал владельцев затрачивать на отопление значительные средства или отказываться от проживания за городом в холодное время года. В начале 2000 года вступили в силу новые требования к теплозащите ограждающих конструкций. Есть ли смысл владельцам частных коттеджей тратить средства на дополнительное утепление дома, соответствующее современным требованиям теплозащиты? Ответ на этот вопрос можно получить, сравнив теплопотери домов, утепленных в соответствии со старыми и современными требованиями.
Обогреть дом при таких теплопотерях возможно при мощности системы отопления 30 кВт. Таблица N1
Элементы конструкции здания | Стены | Окна | Кровля | Пол | Двери | Затраты тепла
на вентиляцию | Требуемая мощность
системы отопления |
Теплопотери (Вт) | 13400 | 6737 | 4164 | 1917 | 1144 | 3656 | 29945 |
Требуемая мощность системы отопления для обогрева дома с современным уровнем теплозащиты понизилась до 15 кВт. Таблица N2
Элементы конструкции здания | Стены | Окна | Кровля | Пол | Двери | Затраты тепла
на вентиляцию | Требуемая мощность
системы отопления |
Теплопотери (Вт) | 3517 | 5142 | 1116 | 1154 | 830 | 3656 | 14345 |
Из этого примера видно, что устройство хорошей теплозащиты позволяет экономить до 50% энергии, расходуемой на отопление. По этой причине целесообразность единовременного вложения средств в утепление дома не вызывает сомнений, в противном случае владельцу долгие годы придется обогревать не только свой дом, но и улицу.
Хорошее утепление дома важно не только с финансовой точки зрения. Мы все стремимся за город, чтобы подышать свежим воздухом, незагрязненным сажей и оксидами азота. Уменьшение расхода сжигаемого топлива в 2 раза резко сокращает количество выбросов в атмосферу, поэтому повышение уровня теплозащиты жилых зданий позволяет существенно улучшить экологическую обстановку.
Стены, кровля и окна называются наружными ограждающими конструкциями здания потому, что они ограждают жилище от различных атмосферных воздействий - низких температур, влаги, ветра, солнечной радиации. При образовании разности температур между внутренней и наружной поверхностями ограждения, в материале ограждения возникает тепловой поток, направленный в сторону понижения температуры. При этом ограждение оказывает большее или меньшее сопротивление Ro тепловому потоку. Конструкции с большим Ro имеют лучшую теплозащиту. Нормирование теплозащитных свойств наружных ограждений производится в соответствии со строительными нормами СНиП II-3-79* (выпуск 1998г.) с учетом средней температуры и продолжительности отопительного периода в районе строительства (СНиП 23.01-99 "Строительная климатология"). Не вдаваясь в подробности, укажем лишь, что для Москвы и Московской области приведенное сопротивление теплопередаче Roограждающих конструкций должно быть не менее 3.2 м2 * °C/Вт. Таблица N3
Наименование конструкции | Сопротивление теплопередаче Ro
м2 * °C/Вт | Величина теплопотерь, Вт/м2, через ограждение
при tв=20°C и tн=-28°C |
Двойное остекление в раздельных деревянных или ПВХ переплетах | 0.42 | 114.3 |
Тройное остекление в раздельно-спаренных деревянных или ПВХ переплетах | 0.55 | 87.3 |
Стена из обыкновенного глиняного кирпича толщиной 510 мм на цементно-песчаном растворе с внутренней и наружной штукатуркой | 0.85 | 56.5 |
Деревянная брусчатая стена толщиной 200 мм | 1.27 | 37.8 |
Трехслойная кирпичная стена из обыкновенного глиняного кирпича толщиной 380 мм с утеплением плитами из минеральной ваты толщиной 120 мм | 3.2* | 15 |
* конструкции стен с сопротивлением теплопередаче Ro=3.2 м2 * °C/Вт и более соответствуют современному уровню теплозащиты для Москвы и Подмосковья.
Теплозащитные свойства стены зависят от ее толщины d и коэффициента теплопроводности материала L, из которого она построена. Если стена состоит из нескольких слоев (например, кирпич-утеплитель-кирпич), то ее термическое сопротивление будет зависеть от толщины di, и коэффициента теплопроводности материала каждого слоя. Способность материала проводить тепло характеризуется коэфициентом L. Чем хуже материал проводит тепло, тем ниже коэффициент L, того материала. Таблица N4
Материал | Плотность
кг/м3 | Коэффициент теплопроводности L в сухом состоянии
Вт/м*°C |
Сталь стержневая арматурная | 7850 | 58 |
Железобетон | 2500 | 1.69 |
Древесина | 500 | 0.09 |
Плиты из минеральной ваты | 40 | 0.039 |
Теплозащитные свойства ограждающих конструкций сильно зависят от влажности материала. Подавляющее большинство строительных материалов содержит определенное количество мельчайших пор, которые в сухом состоянии заполнены воздухом. При повышении влажности поры заполняются влагой, коэффициент теплопроводности которой в 20 раз больше, чем у воздуха, что приводит к резкому снижению теплоизоляционных характеристик материалов и конструкций. Поэтому в процессе проектирования и строительства коттеджейнеобходимо предусмотреть мероприятия, препятствующие увлажнению конструкций атмосферными осадками, грунтовыми водами и влагой, образующейся в результате конденсации водяных паров, диффундирующих через толщу ограждения.
При эксплуатации домов, в результате воздействия внутренней и наружной среды на ограждающие конструкции, материалы находятся не в абсолютно сухом состоянии, а имеют несколько повышенную влажность. Это приводит к увеличению коэффициента теплопроводности материалов и снижению их теплоизолирующей способности. Поэтому при оценке теплозащитных характеристик конструкций необходимо использовать реальное значение коэффициента теплопроводности в условиях эксплуатации, а не в сухом состоянии. (Таблица N5).
Материал | Плотность
кг/м3 | Коэффициент теплопроводности L
Вт/м*°C |
в сухом состоянии | расчетное значение
для условий Москвы
и Подмосковья |
Кладка из обыкновенного глиняного кирпича на цементно-песчаном растворе | 1800 | 0.56 | 0.84 |
Блоки из ячеистого бетона | 600-800 | 0.14-0.21 | 0.26-0.37 |
Древесина (поперек волокон) | 500 | 0.09 | 0.18 |
Плиты из минеральной ваты | 40 | 0.039 | 0.047 |
Плиты из стекловаты | 14 | 0.035 | нет данных |
Фото
Фото
Как известно, влагосодержание теплого внутреннего воздуха выше, чем холодного наружного. По этой причине диффузия водяных паров через толщу ограждения всегда происходит из теплого помещения в холоде. Если с наружной стороны ограждения расположен плотный материал, плохо пропускающий водяные пары, то часть влаги, не имея возможности выйти наружу, будет скапливаться в толще конструкции. Если у наружной поверхности расположен материал, не препятствующий диффузии водных паров, то вся влага будет свободно удаляться из ограждения.
При проектировании коттеджа необходимо учитывать тот факт, что однослойные стены толщиной 400-650 мм из кирпича, керамических камней, мелких блоков из ячеистого бетона или керамзито-бетона обеспечивают сравнительно невысокий уровень теплозащиты (приблизительно в 3 раза меньше требуемой).
Фото
Высокими теплоизоляционными характеристиками, соответствующими современным требованиям, обладают трехслойные ограждающие конструкции, состоящие из внутренней и наружной стенок из кирпича или блоков, между которыми размещен слой теплоизоляционного материала. Внутренняя и наружная стенки, соединенные гибкими связями в виде арматурных стержней или каркасов, уложенных в горизонтальные швы кладки, обеспечивают прочность конструкции, а внутренний (утепляющий) слой - требуемые теплозащитные параметры. Толщина утепляющего слоя выбирается в зависимости от климатических условий и вида утеплителя.
Из-за неоднородной структуры трехслойной стены и применения материалов с различными теплозащитными и пароизоляционными характеристиками в толще конструкции может образовываться конденсационная влага, наличие которой снижает теплоизоляционные свойства ограждения. Поэтому при возведении трехслойных стен следует предусмотреть их защиту от увлажнения в зависимости от причины увлажнения. Таблица N6
Причина увлажнения | Способ защиты | Виды конструкций |
Диффузия водяных паров из внутренних помещений наружу через стены |
- внутренняя стенка (1) трехслойной стены всегда должна быть толще наружной (2);
- плотные материалы (3) в многослойных стенах всегда располагают ближе к внутренней поверхности, а более пористые (4) ближе к наружной;
- наружную стенку (2) трехслойного ограждения лучше выполнять из менее плотного материала;
- при расположении плотных материалов (5) у наружной стороны трехслойной конструкции следует предусмотреть вентилируемую воздушную прослойку (6) с "холодной" стороны утеплителя;
- для удаления влаги из стены воздушную прослойку (6) устраивают ближе к наружной поверхности стены;
- для обеспечения свободного удаления влаги из толщи конструкции пароизоляцию (7) устраивают с "теплой" (внутренней) стороны утеплителя
|
Фото |
Атмосферные осадки |
- устройство карнизов (8), выступающих над фасадом на 400-500 мм;
- устройство отмостки (9) вокруг здания;
- отделка наружной поверхности стен паропроницаемыми водостойкими материалами (отделочный кирпич, известковая штукатурка, виниловая вагонка (сайдинг)
|
Фото |
Капиллярный подсос грунтовой влаги |
- eстройство горизонтальной гидроизоляции (10) в нижней части стены выше уровня земли и ниже перекрытия первого этажа
|
Фото |
При облицовке стен из бруса или блоков из ячеистого бетона отделочным кирпичом на границе слоев необходимо предусмотреть вентилируемую воздушную прослойку
Чаще всего с этой страницы посетители сайта переходят на следующие страницы:
Технология монолитного строительства МАРКО | Комплексное проектирование | Выбор проекта | Фундаменты |Фундаменты буронабивные | Газобетон ИТОНГ | Технология ВЕЛОКС | Технология ДЮРИСОЛ | Технология СИМПРОЛИТ | Газобетон | Строительство дома - ошибки, просчеты, рекомендации | Крыши | Мансарды | Сборно-монолитные плиты перекрытия |
|